| Paper Id: | 100323 | Roll No: | | | |-----------|--------|----------|--|--| |-----------|--------|----------|--|--| ## B. TECH (SEM-III) THEORY EXAMINATION 2019-20 FLUID MECHANICS Time: 3 Hours Total Marks: 100 Note: 1. Attempt all Sections. If require any missing data; then choose suitably. #### SECTION A # 1. Attempt all questions in brief. $2 \times 10 = 20$ | Qno. | Question | Marks | CO | |------|--|-------|----| | a. | Define weight density. | 2 | 1 | | b. | Define Piezometer with neat sketch. | 2 | 1 | | c. | What are stream tube? | 2 | 2 | | d. | What do you understand by Rate of flow? | 2 | 2 | | e. | Write practical application of Bernoulli's equation. | 2 | 3 | | f. | Draw the neat sketch of venutrimeter. | 2 | 3 | | g. | Define stokes's Law. | 2 | 4 | | h. | Distinguish between ratational and irrotaional flow. | 2 | 4 | | i | What are the Magnus effects? | 2 | 5 | | j. | What is flow separation? | 2 | 5 | ## SECTION B ## 2. Attempt any three of the following: $3 \times 10 = 30$ | Qno. | Question | Marks | CO | |------|---|-------|----| | a. | Given that: Barometer reading 740 mm of mercury, specific gravity of | 10 | 1 | | | mercury =13.6, intensity of pressure =40 kPa. Express the intensity of | | | | | pressure in S.I. units, both gauge and absolute. | | | | b. | Sketch the velocity distribution for uniform irrotational flow. | 10 | 2 | | c. | Find an expression for the discharge over a rectangular notch in terms of | 10 | 3 | | | head of water over the crest of the notch. | | | | d. | Prove that viscous flow through a circular pipe the kinetic energy | 10 | 4 | | | correction factor equal to 2. | | | | e. | Give and explain the five errors in CFD and give examples. How can | 10 | 5 | | | they be determined and reduced? | | | #### SECTION C ## 3. Attempt any one part of the following: $1 \times 10 = 10$ | Qno. | Question | Marks | CO | |------|--|-------|----| | a. | A crude oil of viscosity 0.97poise and relative density= 0.9 is flowing | 10 | 1 | | | through a horizontal circular pipe of diameter 100mm and length | | | | | 10m.Calculate the difference of pressure at two of the pipe, if 100kg of | | | | | the oil is collected in tank in 30seconds. | | | | b. | Explain briefly the following types of equilibrium of floating bodies | 10 | 1 | | | (i) Stable Equilibrium (ii) Unstable Equilibrium (iii) Neutral Equilibrium | | | Paper Id: 100323 | Roll No: | | |----------|--| # 4. Attempt any one part of the following: $1 \times 10 = 10$ | Qno. | Question | Marks | CO | |------|---|-------|----| | a. | Write examples of viscous flow and explain the characteristics of | 10 | 2 | | | Laminar flow. | | | | b. | Find the velocity and acceleration at a pont (1,2,3) after 1 sec. for a three | 10 | 2 | | | dimensional flow given by u=yz+t, v=xz-t, w=xy m/s | | | # 5. Attempt any one part of the following: $1 \times 10 = 10$ | Qno. | Question | Marks | co | |------|---|-------|----| | a. | A horizontal pipe of diameter 450 mm is suddenly contracted to a | 10 | 3 | | | diameter of 200 mm. The pressure intensities in the large and smaller pipe is given as 13.734N/cm ² and 11.774 N/cm ² respectively. Find the loss of head due to contraction if C _c =0.62. Also determine the rate of flow of water. | | | | b. | Derive an expression for the power transmission through the pipes. Find | 10 | 3 | | | also the condition of power and corresponding efficiency of transmission | | | # 6. Attempt any one part of the following: $1 \times 10 = 10$ | Qno. | Question | Marks | CO | |------|---|-------|----| | a. | If velocity distribution in laminar boundary layer a flat plate is assumed | | 4 | | | to be given by second order polynomial u=a+by+cy². Determine its form | | | | | using the necessary boundary conditions. | | | | b. | Prove that in case of force vortex, the rise of liquid level at the ends is | 10 | 4 | | | equal to the full liquid level at the axis of rotation. | | | # 7. Attempt any one part of the following: $1 \times 10 = 10$ | Qno. | Question | Marks | CO | |------|--|-------|----| | a. | What is meant by geometric, kinematic and dynamic similarities? Are | 10 | | | | these similarities truly attainable? If is not why? | | | | b. | A 1:40 model of ocean tanker is dragged through fresh water at 2m/s with total measured drag of 117.7 N. The skin (frictional) drag coefficient 'f' for model and prototype are 0.3 and 0.02 respectively in the equation R AV ² . The water surface area of the model is 25m ² . Taking the densities for the prototype and the model as 1030 kg/m ³ and 1000 kg/m ³ respectively, Determine (i) The total drag on the prototype (ii) Power required to drive the prototype. https://www.aktuonline.com | 10 | |